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ABSTRACT 
Computer vision and inertial measurement have made it 
possible for people to interact with computers using whole-
body gestures. Although there has been rapid growth in the 
uses and applications of these systems, their ubiquity has 
been limited by the high cost of heavily instrumenting ei-
ther the environment or the user. In this paper, we use the 
human body as an antenna for sensing whole-body gestures. 
Such an approach requires no instrumentation to the envi-
ronment, and only minimal instrumentation to the user, and 
thus enables truly mobile applications. We show robust 
gesture recognition with an average accuracy of 93% across 
12 whole-body gestures, and promising results for robust 
location classification within a building. In addition, we 
demonstrate a real-time interactive system which allows a 
user to interact with a computer using whole-body gestures. 
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ACM Classification Keywords 
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faces - Input devices and strategies. 

INTRODUCTION 
There is growing interest in new human-computer interfac-
es that go beyond the traditional keyboard or mouse and 
that are not mediated by special devices. The Xbox Kinect 
is an example of a commercially available input device that 
enables free-space whole-body gesture interaction using 
depth sensing and computer vision [16]. The commercial 
success of this device and the success of computer vision in 
general has stimulated the imaginations of consumers and 
researchers alike, and has led to rapid growth in explora-
tions that leverage this new capability (e.g. see [15]). 

However, the burden of installation and cost make vision-
based sensing devices hard to deploy broadly, for example, 
through an entire home or building. Recognizing this limi-
tation, researchers have explored sensors that leverage 
characteristics of the human body for sensing. Harrison et 

al. demonstrated the use of bio-acoustic sensors to deter-
mine the location of taps on the body [7]. Saponas et al. use 
electrical recordings of forearm muscles to sense muscle 
activity and infer finger gestures, which could be extended 
to other parts of the body [12]. Rekimoto presented a sys-
tem that used capacitive sensing built into a wristwatch to 
sense finger gestures [11]. Additionally, more traditional 
approaches have used inertial sensors on the body for track-
ing whole-body gestures [8]. However, these on-body input 
systems are limited to gestures performed by the parts of 
the body on which the sensors are placed, and are not par-
ticularly effective for recognizing whole-body gestures. 

In this work, we present Humantenna, an on-body sensing 
system that recognizes whole-body gestures. Humantenna 
works by using the human body as an antenna that receives 
existing electromagnetic (EM) noise from the power lines 
and electronic devices in a building (see Figure 1). Specifi-
cally, we use changes in the observed signal that occur as 
the body moves to different poses. In addition to demon-
strating the ability to recognize various whole-body ges-
tures in real-time, we also show robust classification of the 
person’s location within the building among a small set of 
trained locations. This approach to sensing mobile whole-
body interaction requires no instrumentation to the envi-
ronment, and only minimal instrumentation to the user.  
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Figure 1: Prior work has shown that we can use the body 
as an antenna to turn uninstrumented walls into interac-
tive surfaces [3]. We extend this technique and show that 
we can sense free-space whole-body gestures in real time. 



 

This paper provides significant advancements over previous 
work using the body as an antenna [3] with the following 
specific contributions: 

1) We describe equipment and a set of offline processing 
techniques required for using the human body as an an-
tenna for recognizing whole-body gestures. 

2) We present a set of experiments conducted with 8 peo-
ple in 8 homes showing the robustness of classifying a 
variety of free-space whole-body gestures.  

3) We describe how we extend our offline techniques to 
perform automatic segmentation and real-time classifi-
cation of whole-body gestures, and demonstrate how 
this can be used in interactive user interfaces. 

BACKGROUND AND RELATED WORK 

Whole-Body Gesture Sensing 
Traditional methods of whole-body gesture recognition 
have largely used computer vision or inertial sensors. Com-
puter vision provides a measurement method that does not 
require the user to wear any additional devices (e.g., [10]). 
The Xbox Kinect, which uses a hybrid RGB and depth 
sensing approach to extract body poses from the scene for 
detection of body gestures, has gained recent popularity 
[16]. In fact, this is part of a larger trend of emerging depth 
cameras and pixel-mixed devices (PMDs) that helps to alle-
viate some of the challenging problems encountered in tra-
ditional computer-vision, such as body segmentation. 

Even with these new devices, vision-based approaches are 
generally limited in their field-of-view, are often sensitive 
to lighting, and suffer from occlusion problems. While re-
searchers have looked at using thermal imaging coupled 
with RGB cameras to address challenges with lighting [9], 
occlusion is hard to overcome. Computer-vision techniques 
are also hard to scale throughout larger spaces such as 
homes, since this requires installing multiple cameras or 
sensors throughout the environment. A slightly different 
approach is used for applications that require extremely 
precise tracking: motion capture [14]. These systems typi-
cally use reflective markers placed at various locations on 
the body, but also require significant instrumentation to 
both the environment and the body.  

Inertial sensing approaches locate all of the sensing on the 
body, which removes the requirement to instrument the 
environment [8]. However, sensing whole-body gestures 
may become cumbersome for users since it requires placing 
multiple sensors all over the body. Researchers have taken 
coarser approaches for detecting a subset of gestures using 
only a single device that a person is likely to already carry, 
such as a mobile phone placed in a pocket or held in a hand 
[1, 13]. However, depending on the location of the sensor, 
only gestures involving part of the body may be detectable.  

In our work, we attempt to remove the requirement of in-
strumentation to the environment, and enable whole-body 
gesture sensing anywhere in the home or building, without 

any occlusion problems, using only a single sensor that can 
theoretically be placed anywhere on the body. 

Interactive Surfaces Using the Body as an Antenna 
Recently, Cohn et al. have proposed using the human body 
as an antenna for sensing touch gestures on walls and appli-
ances [3]. The human body acts as an antenna and receives 
electromagnetic (EM) noise already present in the environ-
ment. Noise sources include the AC power signal, which is 
at either 50 or 60 Hz depending on the country, and higher 
frequency signals from appliances and electronic devices 
such as switch mode power supplies and dimmers [4]. 
Much of this noise is radiating from power lines, and can be 
picked up by the body [2, 5]. Using this noise as signal, 
they demonstrated that it is possible to infer touch gestures 
on walls and appliances throughout the home [3].  

While impressive, this previous work was primarily limited 
to touch gestures. In addition, all touch segmentation was 
done manually, and with a very large feature-set (i.e., 1002 
features every 82 ms), which made for excellent results 
when processed offline, but would be impractical for real-
time use. In this paper, we significantly extend that work, 
leveraging the body as antenna and demonstrating our abil-
ity to sense and recognize free-space whole-body gestures. 
We also demonstrate a method for automatic segmentation 
and real-time classification of gestures, which can be inte-
grated into interactive applications. 

THE HUMANTENNA DEVICE 
In this work, we extended the apparatus used in [3] to 
measure and digitize the voltages picked up by the human 
body. In reflecting on their work, the authors cautioned that 
data collection hardware, especially the laptop that they had 
in their backpacked setup, may have been a noise source 
that was inadvertently creating useful signal for classifica-
tion. In addition, the size of the laptop could have created 
significant ground coupling to the body, which might have 
produced exaggerated performance over what would be 
expected on a small mobile device. 

To alleviate this risk, and to move towards a form factor 
that is more representative of a mobile device that a user 
may carry, we miniaturized the setup and performed storage 
and computation off-board, rather than using a laptop car-
ried by the user. Pragmatically, removing the laptop made 
the apparatus that our participants carried much smaller and 
lighter, and thus led to less fatigue in our experiments.  

Specifically, we use a National Instruments WLS-9206 
isolated wireless data acquisition unit, which is not as small 
as a mobile phone, but measures only 9.5 x 18.2 x 3.7 cm 
and is therefore significantly smaller than the laptop used in 
previous work. The unit takes voltage samples at 250 kS/s 
(kilo-samples per second) and digitizes them at 16-bit reso-
lution. The data acquisition unit was modified to be pow-
ered using a 1000 mAh 3-cell Lithium ion polymer battery, 
which can power the system for several hours of continuous 
data collection. We biased the voltage on the human body 
contact point to a local ground signal on the data acquisition 



 

 

unit through a 10 MΩ resistor in order to remove most of 
the DC offset of the single-ended voltage measurement.  

We wirelessly transmitted the data captured and digitized 
by the acquisition unit over an IEEE 802.11g (Wi-Fi) com-
munications channel to a computer placed elsewhere in the 
environment. This computer stored and processed the wire-
less data stream. In subsequent sections, we discuss offline 
as well as online processing schemes that we have applied 
to this data in various settings.  

As with previous work, we make electrical contact to the 
neck of the user using a standard grounding strap, typically 
worn around the wrist when working with sensitive elec-
tronics. A small wire was used to connect the contact pad to 
the data collection equipment located in a backpack worn 
by the participant. While probably not the final attachment 
point in an ideal form factor, the neck is a convenient place 
for testing because it does not move much as a person ges-
tures with their arms and legs, and it is near the data collec-
tion equipment located in a backpack.  

EXPERIMENT 1: SENSING WHOLE-BODY GESTURES 
We developed a system that could take data from our Hu-
mantenna device and (1) segment when a person is moving 
in free-space, and (2) classify the whole-body gesture the 
person is performing. To test this system, we performed an 
experiment in which participants in different homes con-
ducted a number of gestures while wearing a Humantenna 
device. This experiment provides a proof-of-concept for our 
technique of sensing whole-body gestures. In this experi-
ment, data was processed offline (i.e., after the data collec-
tion phase); however, later in the paper we describe a real-
time implementation which extends on these techniques. 

We conducted the experiment in 8 homes in the Pacific 
Northwest region of the United States, selected to represent 
a variety of constructions. These homes were all single-
family residences built between 1964 and 2003 (µ=1984). 
They ranged in size between 195 and 288 square meters 
(µ=247), and had between 2 and 3 floors, some of them 
basements. For a single home, experiments were done in a 
single visit, although not all homes were tested on the same 
day. We used a different participant in each of these 8 
homes. These 8 participants (2 female) were between 24 
and 62 years old (µ=35), weighed between 50 and 79 kg 
(µ=68), and were between 150 and 180 cm tall (µ=169 cm). 

Experimental Procedure 
We collected data at two different locations in each home. 
One location was in the kitchen of the home, and the other 
location was in the family room. We chose these rooms 
because they existed in every home and offered very differ-
ent environments for gesturing. The kitchen was typically a 
more confined area with many large appliances around the 
participant. On the other hand, the family room was typical-
ly a large open space with few electronics aside from a tel-
evision and entertainment equipment, which were all turned 
off during data collection. In all homes, both locations were 
on the same floor and within sight of each other.  

We chose a spot within each room where there was enough 
space to conduct all of the gestures in the experiment. To 
help participants remember the spot, we placed a small 
square of tape on the floor where the user was to stand to 
perform the gestures. The tape served as a guide to the gen-
eral area of where to stand, but we did not instruct the users 
to stand in the same way in each repetition, nor did we in-
struct the users how they should use the tape to help them 
stand in the same location. 

To minimize the number of variables that changed during 
the experimental session, we turned off the heating and air 
conditioning system, which can cause large changes in the 
electromagnetic noise in the home. However, we left small-
er electronic devices, many of which also continually 
change their state, on during the experiment. We observed 
that many appliances, including refrigerators, hot water 
heaters, and computers changed their state during data col-
lection. We turned on all lights in each of the rooms where 
data was collected, and did not manually change the state of 
lights or appliances once the experiment started.  

Before beginning the experiment, we asked participants to 
empty their pockets of electronics and conductive materials 
and to remove their shoes to keep data collection as con-
sistent as possible. Exploring any effects of these variables 
remains future work.  

During the data collection phase, software running on the 
remote computer issued commands to the participant to 
guide them through the study. The software instructed par-
ticipants to move to a given location and instructed them to 
perform each gesture. Once the researcher who was admin-
istering the study observed that the participant was in the 
start position for the given gesture and was not moving, 
they pressed a key on the computer, which issued a beep 
after a 0.5 second delay. This beep signaled the participant 
to perform the gesture, and then hold their body in the end 
position until another beep occurred. This second beep was 
produced 0.75 seconds after the researcher observing the 
study indicated that the participant had reached the end 
point of the gesture and was no longer moving. The delay 
between the researcher’s key presses and the beeps were 
added to ensure that the user was not still moving when the 
beeps occurred. The timestamps of the beeps are used to 
frame the gesture, and help with the offline segmentation. 

Participants first performed 12 gestures in a specified order 
at one of the locations, which we call a run. They repeated 
4 runs at each of 2 locations, which we call a session. Par-
ticipants performed 10 sessions, for a total of 960 whole-
body gestures per participant. 

We chose a gesture set which tests a variety of different 
types of movement. The gestures varied in duration be-
tween 3.3 and 7.6 s, with a median of 4.8 s. The 12 gestures 
used in the study are shown in Figure 2, and included:  

  



 

1. Starting from a rest position standing up with both arms 
at their sides, participant moved both arms simultane-
ously up until both were above the head 

2. With both arms still above the head, participant brings 
the left arm back down to their side 

3. With the right arm still above the head, participant 
brings it back down to their side 

4. With both arms starting at the sides, participant moves 
them simultaneously outward in front until they are par-
allel to the ground 

5. Participant twists torso so they are facing to the right 
with their left arm out in front of their body and their 
right arm out behind their body. Then, they rotate coun-
ter-clockwise 180 degrees until the right arm is directly 
in front of the body and the left arm directly behind  

6. Starting with both hands in front of the chest, participant 
performs a counter-clockwise circular wave with the 
right hand 

7. Starting with both hands in front of the chest, participant 
performs a clockwise circular wave with the left hand  

8. Standing with both arms down at their sides, participant 
bends down as if they are touching their toes 

9. From a standing position, participant takes one step to 
the right, leaving their left foot planted 

10. From a standing position, participant takes one step to 
the left, leaving their right foot planted 

11. Participant performs a right punch, followed by a left 
punch, and then a kick with the right foot 

12. Participant performs a kick with the right foot, followed 
by a right punch, and a then a left punch 

Offline Gesture Recognition System 
We treated analysis of experimental data as a machine 
learning classification problem, with three main steps: (1) 
segmentation, in which we identify the starting and ending 
timestamps of each gesture, (2) feature extraction, in which 
we process the raw data to produce separable features for 
classification, and (3) classification, in which we use a ma-
chine learning classifier to decide which gesture in the set 
of trained gestures is most likely. Here, we describe each of 
these three parts to our analysis pipeline, which we imple-
mented primarily in Matlab. 

Offline Segmentation 
In general, segmentation involves identifying a temporally 
contiguous segment of data in which a gesture of interest 
has occurred. In this experiment, we controlled the way we 
collected and marked the data stream. In our data, we know 
that gestures occurred between framing ‘beep’ timestamps, 
since the researcher manually marked those during data 
collection, and since the participant was in fact reacting to 
these beeps. However, we do not know exactly when during 
that period the gesture began and ended, which is important 
for the way we perform feature extraction and classifica-
tion. Here, we describe the algorithm used to determine the 
end points of the gesture. 

Figure 3 shows a down-sampled waveform (solid black) of 
the raw data during a rotate gesture (5) as well as the low-
pass filtered DC waveform (dashed red). It is clear from 
this figure that when the user is at rest (i.e., standing still), 
the DC is stable, and when the user is performing a gesture 
(i.e., moving), the DC changes significantly. This observa-
tion is the basis of our segmentation algorithm. We deter-

 
Figure 2: Stick figures depicting mirror images of the 12 
gestures performed by all participants in experiment 1. 

 
Figure 3: Down-sampled data (solid black), DC waveform 
(dashed red), and high-pass filtered data (solid blue) for a 
rotate gesture (5). The manual framing timestamps are 
shown (black), as well as the segmentation timestamps de-
termined by the segmentation algorithm (red). Each of the 
windows used for feature extraction are also shaded. 



 

 

mine the beginning of a gesture by observing when the DC 
waveform transitions from stable to unstable, and likewise 
the end of a gesture is when the DC waveform transitions 
from unstable back to stable. 

Before determining the stability of the DC values, the DC 
waveform itself must be computed. To do so, we first 
down-sample our raw data which was collected at 250 kS/s 
by a factor of 1024, resulting a waveform with a sampling 
rate of 244.14 S/s. To obtain the DC waveform, a 3rd order 
Butterworth IIR low-pass filter with a 3 dB corner at 10 Hz 
is applied to the down-sampled data. This filter removes the 
60 Hz and higher frequency components and leaves only 
the DC offset of the data. Figure 3 shows an example of 
both waveforms. In order to determine the stability of the 
DC waveform, we divided it into 98 ms windows compris-
ing 24 samples each, and computed two metrics for each 
window to determine when the user is likely to be moving.  

The first metric is based on the interquartile range of the 
DC waveform. Using this metric, a window is considered to 
be active (i.e., the user is likely moving during that win-
dow) when the interquartile range of the 24 samples in the 
window is greater than a static threshold of 40 mV. This 
interquartile range metric identifies windows in which the 
DC waveform takes on a wide range of values, and there-
fore is useful in determining when the user is moving. 

The second metric is based on the approximate derivative 
of the DC waveform. In order to remove noise in the DC 
waveform, we first applied a 3rd order Butterworth IIR low-
pass filter with a 3 dB corner at 1 Hz to the DC waveform, 
and denote the output of this filter f. Next, we compute the 
finite difference (i.e., sample-to-sample difference) of f, 
which we call Δf. We consider a window to be active using 
this metric if the absolute value of the mean of Δf is greater 
than a dynamically computed threshold. We compute the 
threshold once for each gesture event to be segmented and 
used it for all windows within that event. We set the thresh-
old to be 0.6 times the standard deviation of Δf across the 
entire gesture event, not just across a single window. This 
metric identifies windows in which the DC value is chang-
ing quickly, indicating that the user is moving. 

In order to obtain the timestamps of the beginning and end 
of the gesture, we combine the interquartile range metric 
and approximate derivative metric by simply taking the 
logical OR of the two metrics. In other words, if either met-
ric identifies a window as being active, it is considered to 
be active. This is done because each metric is sensitive to 
different kinds of variations in the DC waveform, and there-
fore the OR of the two metrics is needed in order to make 
the algorithm work across all gestures in the dataset.  

The start of the gesture is defined as the first active window 
within the framing timestamps manually set during data 
collection. The end of the gesture is the last active window 
within the manual framing timestamps. Note that it does not 
matter whether or not all windows between the start and 
end of the gesture are considered active.  

We note that there are a number of limitations to this seg-
mentation approach which we detail later in the description 
of the real-time segmenter.  

Offline Feature Extraction 
Once the data for a given gesture is segmented, we extract a 
number of features to use for classification.  

First, we divide our gesture event up into a number of 
equally spaced windows. We have found that the exact 
number of windows does not matter much as long as it is 
greater than about 3. For this experiment we divided the 
gestures into 5 equally sized windows, and used one win-
dow of the same length before the gesture began and one 
window after the gesture ended, resulting in 7 windows 
total. The extra window on both ends of the gesture allows 
the classifier to use the start and end state of the gesture. 
Figure 3 shows the windows used for feature extraction. 

We then compute the same features for each window, both 
in the time domain, but also in the frequency domain. In the 
time domain, we compute the DC waveform discussed in 
the description of the segmentation algorithm. We have 
observed that the shape of the DC waveform is fairly con-
sistent across many repetitions of the same gesture, and 
different gestures produce drastically different DC wave-
forms. For each window we compute the DC value to be the 
mean of the DC waveform computed for segmentation over 
the whole window.  

It is clear from Figure 3 that the amplitude of the AC signal 
also changes significantly during a gesture. This is due to 
the user’s body moving closer or farther from electromag-
netic noise sources in the environment in addition to chang-
es in the frequency response of the body during a gesture. 
To obtain a feature which captures these changes, we ap-
plied a 3rd order Butterworth IIR high-pass filter with a 
3 dB corner at 40 Hz to the same down-sampled data used 
to generate the DC waveform. This filter removes the DC 
offset and leaves only the AC signal. This high-pass signal 
is plotted in Figure 3 (solid blue line). To capture the AC 
amplitude in this signal, we compute the root-mean-square 
(RMS) of the high-pass signal over each window. 

The DC and RMS features provide a significant amount of 
information to help classify gestures. However, even more 
information can be gained by using frequency domain fea-
tures as well. Since our raw data was collected at a sam-
pling rate of 250 kS/s, we are able to analyze the frequency 
domain up to the Nyquist frequency of 125 kHz. There are 
many useful signals throughout this whole frequency band 
to classify the location of a user, as described in a later sec-
tion. However, for classifying the gesture being performed, 
we have found that it is possible to get very high levels of 
accuracy by using only the frequencies below 500 Hz. This 
band is dominated by the low-frequency AC power signal 
(60 Hz in the US) and its harmonics. Since most of the en-
ergy radiated off of the power lines and appliances are be-
low 500 Hz, it is not surprising that these features would be 
the most useful for classification. 



 

In order to compute the frequency domain features below 
500 Hz for each window in the gesture, we use the 17 fre-
quencies between 0 and 500 Hz with 30.52 Hz spacing. The 
30 Hz resolution allows us to obtain features on and be-
tween the peaks in our signal, which is a series of sharp 
peaks spaced 60 Hz apart (i.e., harmonics of a 60 Hz fun-
damental). To compute these frequency components, we 
take an 8192-point fast Fourier transform (FFT) using an 
8192-sample Hann window on our raw 250 kS/s data. The 
17 frequencies of interest are simply the first 17 FFT bins. 
In order to take our FFT over arbitrarily sized windows, we 
compute a number of 8192-point FFTs, each on only 8192 
samples of data. To use all samples within a window, we 
overlap the FFTs such that adjacent FFTs may use the same 
samples in their computation. The resulting FFT magni-
tudes are then averaged to produce the equivalent FFT 
magnitude over the whole window.  

We used our two time domain features (i.e., DC and RMS), 
as well as the 17 frequency domain features in both linear 
and logarithmic (dB) units. The resulting 36 features per 
window are concatenated across the 7 windows to produce 
a feature set of 252 features representing a single gesture.  

Offline Classification 
In order to determine which gesture was performed, we use 
the sequential minimal optimization (SMO) implementation 
of the support vector machine (SVM) found in the Weka 
machine learning toolkit [6]. An SVM uses labeled data to 
construct a set of hyper-planes that separate labels in a 
high-dimensional feature space, which can then be used for 
classification. Our SVM uses the 252 extracted features to 
classify which of the 12 gestures had most likely occurred. 

Gesture Classification Results 
To calculate how accurately we could classify whole-body 
gestures with our system, we conducted a 10-fold cross-
validation on all of our data from each of 2 locations in 
each of 8 homes and participants.  

In each fold, we trained on 36 examples and tested the re-
maining 4 examples of each gesture. Each fold was made 
up of data points from a single session of data collection, 
which in turn consisted of 4 repetitions of each gesture. 
This ensured that training and testing data points were sepa-
rated within a fold, and that training data and testing data 
were separated by several minutes in time, which avoids 
over-fitting to transient variations in the environment. We 
assert that these results are representative of what we would 
expect to see in an interactive system.  

The average accuracy across participants and homes was 
92.7%, with a standard deviation of 3.0% when classifying 
between our 12 gestures. This is impressive, given that ran-
dom chance is about 8.3% for 12 gestures. The maximum 
aggregate accuracy for a single location was 98.3%, and the 
minimum was 86.5%.  

Close analysis of the confusion matrix (see Figure 4) sheds 
even more light on the feasibility of Humantenna for classi-

fying whole-body gestures. The most confusion was be-
tween the right wave (6) and left wave (7). There was also 
some confusion between the left arm down (2) and right 
arm down (3). It is clear that the classifier has the most 
trouble differentiating left from right, which is because 
some locations have only small differences in the electro-
magnetic noise on each side of the body. There was also 
some confusion between punch twice then kick (11) and 
kick and then punch twice (12), as these are both very simi-
lar gestures. However, there were few other confusions. 

These results are encouraging and confirm our hypothesis 
that Humantenna is capable of sensing whole-body gestures 
by using the body as an antenna receiving electromagnetic 
noise already present in uninstrumented environments. It 
further validates our assumption that this would work 
equally well across a reasonably wide set of people and 
homes, which is also very important.  

EXPERIMENT 2: CLASSIFYING LOCATION 
Previous work using the human body as an antenna has 
shown the ability to robustly classify the user’s location in a 
home while the user is standing still near a wall [3]. To ver-
ify the feasibility of classifying the user’s location in more 
realistic settings, when the user is away from the wall and 
performing gestures, we conducted a second, smaller study.  

Experimental Procedure 
Three participants took part in this study, which was run in 
two different homes. We ran a pair of participants in each 
home in a single day, with one participant in common be-
tween the two homes. Within each home, we chose 8 dif-
ferent locations. Two of the locations were in the same 
large room, and the other rooms were distributed through-
out the home. We chose locations that varied in terms of the 
amount of open space as well as the number and type of 
electronic appliances present. Each participant performed 
gestures in 5 of the 8 chosen locations. This meant that 2 

 
Figure 4: Confusion matrix showing the experiment 1 
whole-body gesture classification results. Darker shading 
indicates more confusion, and the values are percentages. 



 

 

locations were shared between each pair of participants, 
allowing us to examine stability across people.  

The participants performed only a subset of 8 gestures from 
the full set of 12 shown in Figure 2: (1) both arms up, (2) 
left arm down, (3) right arm down, (5) rotate, (6) right hand 
wave, (7) left hand wave, (9) step to the right, and (10) step 
to the left. This gesture set contains mostly arm waves on 
both sides of the body since these are the types of gestures 
which our gesture classifier produces the most confusions.  

We used the same equipment and procedure as in the first 
experiment for whole-body gesture sensing. However, we 
only performed 5 sessions, resulting in 20 examples of each 
gesture rather than 40. Therefore, each participant complet-
ed a total of 800 whole-body gestures in each home.  

Offline Location Classification System 
Unlike gesture classification, it is not necessary to capture 
how the signal changes over time in order to determine the 
location of the user. Therefore, instead of running a seg-
mentation algorithm to find the start and end of each ges-
ture, and then dividing the gestures into discrete windows, 
we instead use a single window at the beginning of the ges-
ture. We simply take the first 0.5 s after the beginning fram-
ing timestamp that was manually set by the observer as our 
window from which to extract features. 

We used the same DC and RMS features as in the gesture 
classification, computed in the exact same manner. For the 
frequency domain, we again computed an 8192-point FFT 
using an 8192-sample Hann window on our raw 250 kS/s 
data. However, past work using the human body as antenna 
for location classification suggests much of the differentiat-
ing signal for determining the location of a user comes from 
the presence of high frequency peaks which are radiated 
from appliances in the home [3]. Therefore, instead of using 
only frequency bins below 500 Hz, we use the magnitude of 
all frequency bins below 4 kHz, as this is where the majori-
ty of the harmonics of 60 Hz are found. We also run a mov-
ing average across the frequency bins, with the window size 
of 1 kHz, and extract features at 1 kHz intervals across the 
whole frequency band, from 0 to 125 kHz.  

Instead of using the absolute magnitude from each frequen-
cy bin, we normalize all frequency domain features by the 
amplitude of the 60 Hz peak, which is the fundamental fre-
quency of the signal emitted from the power lines. In the 0 
to 4 kHz band, we use 132 relative frequency domain fea-
tures at a 30.52 Hz spacing. In the full 0 to 125 kHz band, 
129 features are used with approximately 1 kHz spacing. 
Since we again use all frequency domain features in linear 
and logarithmic (dB) units, we have a total of 522 frequen-
cy domain features, plus 2 time domain features, resulting 
in 524 total features. 
Location Classification Results 
To test our ability to classify the user’s location, we ran 5-
fold cross-validations, with each fold made up of data 
points from a single session, as was done for gesture classi-

fication. Again, folding by session provides an accurate 
representation of what is expected in an interactive system.   

Running the cross-validation for each participant in each 
home, we obtain an average classification accuracy of 
99.6% (σ = 0.4%) when classifying between the 5 locations 
used by each participant (chance = 20%). 

These high classification accuracies reinforce results seen 
in the previous work using the human body as an antenna 
for user location classification [3]. However, since we are 
able to classify whole-body gestures using a sampling rate 
of only 976.56 S/s, it would be much more practical for 
many applications if the location could also be classified 
with this low sampling rate.  

To test this, we ran all of our cross-validations again using 
the same feature set used in our gesture classification exper-
iment (i.e., only 36 features). This results in an average 
classification accuracy of 97.1% (σ = 2.1%). This accuracy 
is lower than what we obtained using the much larger fea-
ture set, but it still a very high accuracy and is probably 
good enough for many applications. The advantage of this 
approach is that user location and gesture classification can 
be done using the same features, which we demonstrate can 
be extracted in real-time in the next section. 

One potential caveat when using this reduced feature set is 
that the classifier is not able to take advantage of the high 
frequency peaks produced by many of the appliances at 
different locations. As a result, it must use only the differ-
ences in the strength of 60 Hz wave and its harmonics to 
fingerprint each location. As a result, such a feature set will 
probably not be as robust to changes in the electrical state 
of the home as well as temporal drift, but verifying this and 
exploring solutions to it remains future work. 

Since the location classifier uses differences in the strengths 
of certain frequencies to fingerprint a location, we hypothe-
sized that it should work well across users. To test this, we 
trained our classifier on one user, and tested it on the data 
from the other user in each of the 2 shared locations in both 
homes. We achieve an accuracy of 100% using the full fea-
ture set, and 96.3% using the reduced feature set described 
above. However, since there were only 2 locations shared 
between users, random chance is much higher at 50%.  

We thus applied a more stringent test by training the 5-
location classifier using one participant and then testing the 
2 locations they had in common using the other participant. 
This results in 96.1% accuracy using the full feature set, 
and 84.6% accuracy using the reduced feature set. This 
suggests that models built off users could be generalized 
relatively well to other users. 

Similarly, we decided to test whether we could classify the 
home and location of the user from the data collected in our 
main gesture experiment. In this case, we have 8 homes and 
2 locations in each home, and thus chance is 6.25% (i.e., 16 
classes). We obtained an accuracy of 99.4% using the full 
feature set, and 94.1% using the reduced feature set. 



 

Thus, in addition to being able to classify the whole-body 
gestures being performed, we are also able to classify the 
user’s location with a very high level of accuracy. In addi-
tion, this classification can be done using the same feature 
set used for gesture classification, while experiencing only 
a small decrease in classification accuracy. We have also 
shown that the location can be classified independently of 
the user, and therefore a single user can train a location 
classifier which works well for all other users. Although 
these results are promising, they come from a very small 
study involving only a few different locations, and therefore 
a larger study is necessary to verify the results in general. 

REAL-TIME INTERACTIVE SYSTEM 
The experiments demonstrate the feasibility of using the 
human body as an antenna for sensing and classifying 
whole-body gestures as well as location. Building on those 
results, we describe the extensions that we developed in 
order to turn the offline processing methodology into a real-
time whole-body recognition system. 

Real-Time Data Capture 
In the offline experiments, we collected data at the maxi-
mum sampling rate of 250 kS/s, sent it over Wi-Fi to a 
computer and logged it to a hard disk for later post-
processing. In a real-time system, the data needs to be pro-
cessed immediately after it is captured from the data acqui-
sition unit. Fortunately, our experiments taught us that we 
only needed the frequency components of the signal up to 
500 Hz to perform highly accurate whole-body gesture 
classification. As a result, our real-time system only sam-
ples data at a rate of 976.56 S/s, which is 256 times less 
than the rate used for the offline experiments. The lower 
sampling rate greatly reduces the required hardware and 
software specifications for the real-time system. The cap-
tured data is buffered by the data acquisition hardware into 
32 sample buffers, meaning that a new buffer is captured 
every 33 ms. All of the remaining processing described in 
the following sub-sections is computed per 33 ms frame. 

Real-Time Segmentation 
The segmentation algorithm used in the gesture sensing 
experiment cannot run in real-time because it relies on the 
presence of the manual framing timestamps recoded during 
data collection. A real-time segmenter must automatically 
identify gesture events from the live data stream. In addi-
tion, minimizing latency is important because the segment-
ed event must be identified before the classifier can run. 

To segment gestures in real-time, we first down-sample the 
captured data by 4 from 976.56 S/s to 244.14 S/s, which is 
the same sampling rate used by the offline segmenter. We 
apply a 3rd order Butterworth IIR low-pass filter with a 3 dB 
corner at 1.5 Hz to this data to obtain f. The 3 dB corner of 
this filter was moved from 1 Hz to 1.5 Hz in the real-time 
implementation in order to reduce the latency of the seg-
mentation. With the corner at 1 Hz, the group delay of the 
filter is 320 ms (78 samples); however, moving the corner 
to 1.5 Hz reduces the group delay to 213 ms (52 samples). 
Next, we compute Δf by taking the finite difference (i.e., 

sample-to-sample difference) of f. If the absolute value of 
the mean of Δf is greater than a static threshold, then we 
consider the frame to be active.  

We then apply smoothing to remove noise. First, we con-
sider any periods of inactivity less than 197 ms (6 frames) 
to be active. This essentially removes small sections of in-
activity in the computed activity metric. Next, we remove 
any period of activity less than 1.02 s (31 frames) because 
gestures are assumed to be at least 1 second long. Any re-
sulting event in the smoothed activity metric is considered 
to be a gesture to be classified. 

As a result of the 213 ms group delay of the low-pass filter 
and the 197 ms wait period to check for another period of 
activity, the latency of the real-time segmentation algorithm 
is 410 ms. Reducing this latency remains future work.  

Real-Time Feature Extraction 
We perform the real-time feature extraction in two parts in 
order to reduce latency. First, we compute the DC, RMS, 
and FFT values per frame in parallel with the segmentation 
(i.e., in a separate thread). For the time domain features, we 
down-sample the streaming data by 4 so that the sampling 
rate is 244.14 S/s, and then compute the DC and RMS fea-
tures in the same way as in the offline segmenter. We ob-
tain the 17 frequency domain components between 0 and 
500 Hz with a spacing of 30.52 Hz by taking a 32-point 
FFT using a 32-sample Hann window on each 32 sample 
frame. The DC, RMS, and FFT features are computed for 
each frame and are queued until a gesture is segmented.  

Once the segmenter finds a gesture, we dequeue the ex-
tracted features corresponding to all data frames during the 
gesture. We divide the data frames into 5 equal sized win-
dows, and compute the average DC, RMS, and FFT magni-
tude values over each window. We compute the 17 FFT 
magnitude features in dB as well as linear units. Like the 
offline features, the real-time system uses 36 features per 
frame (i.e., DC, RMS, 2x17 FFT bins). Since the real-time 
system uses only 5 windows per gesture, with no windows 
before or after the gesture, a total of 180 features are used.  

Real-Time Classifier 
To classify the segmented gesture, all 180 features are then 
fed to an SMO implementation of the SVM classifier found 
in the Weka machine learning toolkit [6]. The SVM runs 
the new features against a previously trained model to pro-
duce a classification result, which is sent the user interface. 

Demonstration Applications 
We have implemented two simple applications to demon-
strate the Humantenna real-time interactive system; both 
are demonstrated in the attached video figure. 

In one application, the user performs a gesture, which is 
recognized and mirrored by an appropriate pre-recorded 
stick figure on screen. The other application we developed 
is a game of Tetris in which the user controls the falling 
blocks with whole-body gestures. Although any gesture can 
be trained, we used step right and step left to move the 



 

 

block right and left respectively. To rotate the block we 
performed a rotation gesture with both hands, as if the user 
was picking up a physical block and rotating it. To drop the 
block to the bottom of the screen the user would stomp their 
left foot. Figure 5 shows an image of a user playing Tetris 
using the Humantenna demonstration.  

In both demonstration applications, we trained the classifier 
using 20 examples of each gesture, and obtained classifica-
tion accuracies of about what we would expect using the 
offline system (i.e., low 90%). We also learned from our 
interactive system that changes in the environment make 
the use of a static threshold for segmentation somewhat 
brittle over longer periods of time. In order to build a seg-
menter that is more robust to environmental changes, a 
computed dynamic threshold should be used, as it was in 
the offline system. Doing this remains future work. 

DISCUSSION AND FUTURE WORK 
Through the experiments presented in this paper, we have 
shown that using the human body as an antenna, the Hu-
mantenna system can classify whole-body gestures at about 
93% accuracy, and can classify the user’s location at almost 
100% accuracy. In addition, we have demonstrated the abil-
ity to run the Humantenna system in real-time. This section 
discusses the size of the training set needed to achieve this 
accuracy, the limitations of the current system, and future 
work to improve the system. 

Size of Training Set 
The results presented earlier in this paper were obtained 
using a classifier that was trained using either 16 or 36 
training examples. For many practical applications of Hu-
mantenna is it important to reduce the size of this training 
set as much as possible. We therefore conducted a simple 
experiment in which we ran all of our cross-validations 
again while varying the number of sessions of data used for 
training the classifier. We found that the average accuracy 
across all participants in all locations seemed to converge 
when the training set contained at least 16 examples of each 
gesture. However, even with the size of the training set as 
low as 4 examples of each gesture, we achieved gesture 
classification accuracies of 84.5%. 

This indicates that a simple impromptu application of Hu-
mantenna can be quickly trained and still achieve relatively 
high levels of accuracy. When more accuracy is needed, 
additional training examples can be added. In addition, with 
enough training examples, it may be possible to train a gen-
eralized model which works well for a variety of users, 
homes, and locations.  

Ultimately, we envision using an incremental machine 
learning approach, in which the generalized model is used 
as a baseline, and a personalized model is created as a per-
son uses the system in a new location. Such an approach 
would also allow the model to adapt to changes in the envi-
ronment as well as changes in how a user performs a ges-
ture over time. 

Limitations and Future Work 
Our current classification approach divides each gesture 
into a fixed number of windows, computes features, and 
uses the aggregate feature vector in an SVM classifier. 
While this windowing approach scales reasonably well to 
performing gestures at different speeds, it requires sub-parts 
of the gestures to have the same relative timing. For exam-
ple, in the gesture where the user punches twice and kicks, 
the classifier will only be able to handle changes in the 
speed of this gesture if all parts of the gesture’s speed are 
scaled equally.  

In addition, this approach requires that the segmentation 
algorithm be stable and provide very precise timestamps of 
the beginning and end of each gesture. If these start and end 
positions are shifted even slightly, the windows will be 
shifted and thus the classifier is likely to misclassify. This 
worked surprisingly well in our experiments, but in future 
work, we propose instead using a classifier that considers 
discrete states of each gesture rather than windows in time, 
for example a hidden Markov model (HMM), or condition-
al random field (CRF). 

Furthermore, an HMM, or similar approach may also be 
beneficial in reducing the latency of the system. The current 
segmentation algorithm has high latency because it cannot 
identify the occurrence of a gesture until a fixed period after 
the event has ended. With an HMM, the segmentation could 
be implemented as a threshold on the likelihood that the 
current sequence of events represents a valid gesture. This 
would allow gesture segmentation and identification to oc-
cur while the gesture is being performed rather than some 
time after it has completed.  

Another important question is which locations in a building 
work better than others. Through our experimentation, we 
have found significant variation in ability to classify ges-
tures at different locations. Thus far, we have not been able 
to test the system at a large enough number of locations to 
obtain statistically significant conclusions about what prop-

 
Figure 5: User playing a Tetris game using the Human-
tenna real-time whole-body gesture sensing system. 



 

erties of a location makes it good or bad for the Humanten-
na system. This detailed exploration remains future work.  

As with previous work, the electrical state of the home (i.e., 
which appliances and lights were turned on) remained rela-
tively constant throughout our experimental sessions. In any 
real deployment, it is reasonable to expect lights and other 
appliances to be turned on and off during the use of the 
system. Fully exploring the robustness of our system to 
these changes remains future work, although we suggest 
several approaches for dealing with the issues. First, many 
of these variability issues can be handled with a larger train-
ing set which includes examples from multiple electrical 
states of the home. In addition, we intend to explore a fea-
ture set which is more robust to changes, as we have al-
ready done for the location classification (i.e., using nor-
malized frequency domain features rather than absolute 
magnitudes). Additionally, it is possible to monitor the state 
of the home using existing systems [4], and therefore 
change the classifier’s model based on the sensed state. 

We also plan to explore the ability to implement Human-
tenna on a small mobile device located in a user’s pocket, 
for example a cellular phone. The sensing hardware is 
simply an analog-to-digital converter running at around 
1 kS/s and a large resistor to provide a DC bias. Therefore, 
it is easy to implement the required hardware on any current 
mobile device. However, it remains future work to explore 
the possibility of sensing the electromagnetic signal re-
ceived by the human body antenna without physical contact 
to the body. In this case, we would need to use a short range 
air-coupled connection to the body instead. 

Although the detailed experiments conducted in this paper 
focus on gesturing in the home, we believe that Humanten-
na will work equally well in commercial buildings and oth-
er environments. We informally conducted experiments in a 
modern office building, and although the signal received by 
the body is significantly different from the signal seen in a 
residential environment, the segmentation and gesture clas-
sification appeared to work just as well. We plan to further 
explore the ability to use the human body as antenna for 
sensing gestures in other environments other than the home. 

CONCLUSION 
By extending past work using the human body as an anten-
na for recognizing touch gestures, we have built a real-time 
system to sense whole-body gestures. This system could 
allow truly mobile and ubiquitous whole-body interaction 
by eliminating the need for instrumenting the interaction 
environment. We have shown the ability of our system to 
sense a user’s whole-body gestures with an average accura-
cy of 93%, as well as classify the user’s location within a 
building at nearly 100% accuracy. We also implemented 
our whole-body sensing system in real-time to demonstrate 
its ability to operate as an interactive user input system. 
This work suggests the feasibility of building real-time, 
interactive whole-body gesture sensing systems on mobile 

platforms carried by a user, and thus enabling a variety of 
applications of whole-body interaction. 
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