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Abstract.  Phase errors have a dramatic effect on the results of a meteor radar 
interferometer, and compensating for these errors is difficult.  However, we present a 
new method of interferometry which accurately compensates for the mutual coupling 
between antennas placed very close to each other in an array.  This new method of 
interferometery is based on computer modeling methods and the use of Numerical 
Electromagnetics Code (NEC), a method of moments EM simulator.  The proposed 
method of interferometry not only locates the position of maximum likelihood for a 
meteor, but also plots the likelihood of the meteor’s location across the whole sky. 

1.  Introduction 
 
Meteor scatter events can be easily detected using 

current passive radar systems, such as the Manastash 
Ridge Radar (MRR) described in Sahr and Lind 
[1997].  In addition, methods described in Meyer and 
Sahr [2004] can be used to obtain range and Doppler 
data from the meteor scatter.  However, accurately 
determining the direction of the meteor scatter is diffi-
cult.  Common practice is to set up an array of anten-
nas that can act as an interferometer.  By measuring 
the phase differences between the antennas in an array, 
it is possible to determine the angle of arrival of the 
incoming radio wave [Jones et al., 1998].  When com-
plemented with range data, this can give the exact geo-
physical location of a meteor scatter event. 

Unfortunately, there are several errors that can 
make these calculations inaccurate.  Since interfer-
ometric data, such as angle of arrival, are calculated 
based on phase differences between antennas, any er-
rors in phase will cause significant errors in all derived 
values.  For this reason, Holdsworth et al. [2004] de-
scribes various methods for phase calibrations.  These 
phase errors can be divided into two main categories: 
transmission errors and receiver equipment errors.  
Transmission errors are introduced when the radio 
wave travels through an imperfect medium from the 
transmitter to the receiver.  Receiver equipment errors 
occur when the receiver equipment introduces phase 
shifts into the measured data.  These phase shifts can 
come from many sources; however, only those phase 
shifts due to transmission line propagation and mutual 
coupling between antennas are considered in this pa-
per.  Other significant errors, including transmission 
errors are described in Holdsworth et al. [2004]. 

Phase shifts within the transmission lines that con-

nect the antennas to the receiver can cause significant 
errors in the measured data at the receiver.  If all of the 
transmission lines are not the same length, phase dif-
ferences will be seen by the receiver even when all 
antennas are in phase.  Luckily, these errors are linear, 
and therefore can be taken into consideration if the 
lengths of all transmission lines are accurately known. 

In addition to phase shifts in the transmission 
lines, errors can occur due to the mutual coupling be-
tween the antennas in an array.  This coupling is due to 
the mutual impedances between the antennas.  Since 
the antennas are not isolated but in an array, it cannot 
be assumed that the voltages seen by the receivers rep-
resent those from isolated antennas.  Since the effect of 
mutual coupling increases as the distance between the 
antennas decreases, significant errors can be intro-
duced by closely spaced antennas.  Unfortunately, this 
is a very difficult problem to take into account, and 
therefore most antenna arrays simply avoid the issue 
by making larger spacing between antennas.  Accord-
ing to Jones et al. [1998], the effect of mutual imped-
ance will become negligible when the spacing between 
two dipoles is greater 2λ (two wavelengths).   

Unfortunately, antennas that are further than 0.5λ 
apart introduce an ambiguity since an unknown num-
ber of multiples of π are introduced [Jones et al., 
1998].  These ambiguities make it very difficult to 
mathematically solve the inverse problem of where the 
meteor scatter came from. 

In this paper, we propose a new method for find-
ing the direction of the meteor scatter, which takes into 
consideration all of the above errors and difficulties.  
This new method is a vast improvement over the tradi-
tional methods of interferometery, which can only de-
termine the position of maximum likelihood of a me-
teor scatter.  Our method can generate a map of the 
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likelihood of the meteor scatter across the whole sky.  
Furthermore, our method of interferometry easily ac-
counts for phase errors due to mutual coupling and 
transmission line phase shifts.  Unlike traditional inter-
ferometry, angle of arrival ambiguities and aliasing are 
not an issue with our method.  For these reasons, this 
new method is a very useful tool for all meteor radar 
systems. 

 
2. System Description 

  
The Radar Remote Sensing Laboratory (RRSL) at 

the University of Washington is a passive radar system 
that uses the FM broadcasts in Seattle as its source 
signals [Sahr and Lind, 1997]. Since it operates in the 
FM band (88 MHz – 118 MHz), the wavelength (λ) of 
the signal is approximately 3 m.  The antenna array 
consists of five Diamond D130-J discone antennas 
arranged in a cross, as shown in Figure 1.  The array 
contains two orthogonal linear arrays of three antennas 
in which the central antenna has a spacing of about 3 
m (1λ) to one antenna and a spacing of about 4.5 m 
(1.5λ) to the other.  These two orthogonal linear arrays 
have a shared center antenna such that the whole array 
of five antennas looks like a cross.  This configuration 
is a slight variation of the array presented in Jones et 
al. [1998].  The antenna numbering scheme shown in 
Figure 1 is used throughout the paper. 

In order to conduct any type of interferometry, it 
is vital to know the exact positions of the antennas in 
the array.  We have therefore made careful measure-
ments of our array.  In addition, we used an implemen-

tation of the Particle Swarm Optimization algorithm 
described in Robinson and Rahmat-Samii [2004] to 
determine the exact positions of our antennas based on 
our measurements.  The ground plane is defined to be 
the xy-plane, with the center antenna directly above 
the origin.  Table 1 shows the accepted coordinates of 
the feed point of each antenna in the array.  The array 
described by these coordinates is used in all calcula-
tions throughout this paper, unless noted otherwise. 
 
3. Phase Error in Transmission Lines 
 

One source of phase errors is the phase shifts 
within the transmission lines that connect the antennas 
to the receiver.  In order to counteract this effect, it is 
critical to know the exact electrical lengths of the ca-
bles that connect the antenna feeds to the receivers.  If 
the length of cable is known, the voltages measured at 
the receivers can be adjusted to represent voltages at 
the antenna feed points. 
 
3.1 Measurement of Cable Length 

 
To measure the exact electrical lengths of the ca-

bles, we used an RF signal generator to produce a sig-
nal within a coaxial transmission line.  Since the cable 
was open-circuited, this produced a standing wave that 
could be measured on an oscilloscope.  By sweeping 
the signal generator in frequency across the FM band, 
we could measure which frequencies correspond to 
minimum amplitude standing waves on the oscillo-
scope (see Table 2).  Using these measurements, the 
exact electrical length of each cable was determined 
using the method described below. 

Since a standing wave has a period of π and any 
two consecutive minima of the standing wave differ by 
one waveform, then two consecutive minima must 
differ by π radians.  If L is defined to be the electrical 
length of transmission line, and k to be the wavenum-
ber of the standing wave, then it follows: 

 
Figure 1: Discone antenna array; view from the z-
axis.  Distances indicated are all approximate. 

  x 
coordinate 

y 
coordinate 

z 
coordinate 

Ant. 0 0.000 0.000 1.870 
Ant. 1 0.008 -3.006 1.920 

Ant. 2 -0.267 4.443 1.855 

Ant. 3 -3.006 -0.111 1.870 

Ant. 4 4.275 0.000 1.880 

Table 1: Cartesian coordinates of the feed point of 
each antenna in the discone array (in m) 
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because  

 
 
By manipulating Equation (1), we can obtain ca-

ble length estimates using Equation (2): 
 

 , 
 

where Δν is the difference in frequency between con-
secutive minima in the standing wave. 

Additionally, because the cable was open cir-
cuited, there must be N + 1/2 wavelengths within the 
transmission line, where N is a positive integer.  If the 
data set contains n values, then 

  

  
 
From Equation (2), the following equations for Nn 

and L can be obtained: 
 

  

  
 
Using the above equations, the following algo-

rithm can be used to accurately determine the cable 
lengths. 

1. Use Δν to find an estimate for L, called Lest 

using Equation (2).  Lest is the average of n-1 
estimates for L computed using Equation (2) 
for each n-1 frequency differences. 

2. Use Lest and νn to find Nn for each n using 
Equation (4).  This gives n values for Nn 
which are very close to consecutive integers. 

3. Use int(Nn) and νn to find L for each n using 
Equation (5).  This gives n values for L with 
only a very small deviation.  These n values 
are averaged to obtain a single value for L. 

Table 3 shows the calculated cable lengths of the 
sample cables presented in Table 2.  The average un-
certainty of the cable length using this method is 
0.10%.  Even with a cable as long as 50 m, this method 
of estimating the cable length gives a length uncer-
tainty of only 5 cm.  At a 3 m wavelength, this corre-
sponds to a 6° phase uncertainty, which is an accept-
able level of error.  

 

3.2 Transmission Line Phase Shift  
 Correction 
 

The effect of the phase shifts inside of the trans-
mission lines can easily be removed if the exact elec-
trical length of each cable is known.  The phase shift 
within a length L of transmission line can be expressed 
as: 

 
φ = k L, 
 

where k is the wavenumber of the signal traveling 
within the cable.  Since k is equivalent to 2πν / c, 
Equation (6) can be rewritten as: 

 

, 
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Cable ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10 ν11 

A 77.8 85.9 94.1 102.3 110.5 118.7           

B 87.6 90.3 93.0 95.7 98.4 101.1 103.8  106.5  109.2  111.9  114.6  

C 86.4 88.1 89.8 91.5 93.2 95.0 96.7 98.4 100.1 101.8 103.5 

Table 2: Frequencies of minima of the standing wave in each cable (all ± 0.1 in MHz) 

(1) 

(2) 

because 

(3) 

(4) 

(5) 

n∀

Cable Length (in m) Uncertainty (in m) 

A 18.314 ± 0.019 

B 55.600 ± 0.055 

C 87.614 ± 0.092 

Table 3: Calculated electrical length of each cable. 

(6) 

(7) 
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where ν is the frequency of the wave, and c is the 
speed of light in free space.  It should be noted that L is 
the electrical length of the cable, and not the physical 
length. 
 The phase shift expressed by Equation (7) can be 
applied to the voltages measured by the receiver to 
remove the transmission line errors.  Equation (8) 
represents the voltage on the antenna feed, Va: 
 

, 
 

where Vr represents the voltage measured at the re-
ceiver.  Using Equation (8), the effect of phase shifts in 
the transmission lines can be removed as long as the 
exact electrical length of the cable is known. 
 
4. Phase Error due to Mutual Coupling 
  

In addition to phase shifts within the transmission 
lines, phase errors can be introduced due to the mutual 
coupling between the antennas in an array.  These er-
rors can be very difficult to estimate and counteract, so 
many radar systems are built with large spacing be-
tween antennas to minimize the mutual coupling.  
Jones et al. [1998] suggests the minimum spacing be-
tween antennas should be no less than 2λ, since mutual 
coupling was found to be negligible at distances 
greater than 2λ.  However, technical constraints forced 
our array to have antenna spacing as small as 1λ.  To 
avoid significant errors from mutual coupling, we de-
veloped a method for determining the effect of mutual 
coupling. 

Using the method of moments simulation called 
Numeric Electromagnetics Code (NEC) [Burke and 
Poggio], a computer model of the antenna array was 
created that could perform simulations to compute the 
effect of mutual coupling.   

 
4.1 Building the NEC Model 
 

Detailed measurements of the Diamond D-130J 
discone antenna were used to create a NEC computer 
model.  Figure 2 shows the radiation pattern generated 
from the NEC model . 

As a test of the model, NEC was used to generate 
a plot of the standing wave ratio (SWR) as a function 
of frequency.  This plot is compared to the SWR plot 
created using a network analyzer connected the actual 
antenna (see Figure 3).  From these plots, it is clear 
that the model is a very accurate representation of the 

actual antenna. 
With confidence in the accuracy of the NEC 

model, the model of the entire array could be com-
pleted by duplicating the discones and placing each 
antenna at the correct location.  The completed com-
puter model can be used to aid in determining the like-
lihood of a meteor scatter event in each part of the sky. 

 
4.2 Using the NEC Model 
 

NEC simulations can be run to obtain the expected 
voltages measured at the feed point of each antenna  
for a meteor scatter event at a given location in the sky.  
A meteor scatter event can be approximated as a plane 
wave excitation of the antenna array [Jones et al., 
1998].  For this reason, each NEC simulation uses a 
circularly polarized plane wave excitation.  The result 
of each simulation is a list of complex voltages that 
would be measured on each antenna feed, given the 
simulated plane wave excitation. 

By varying the azimuth and elevation angle of the 
excitation, a large table of expected voltages for every 
point in the sky can be computed.  Using 1° azimuth 
and elevation resolution, this table can be generated in 
only a few hours of simulation. 

Because the NEC simulations are running a com-
plete model of the array, all of the effects of mutual 
coupling are taken into consideration.  The resulting 
table of voltages can be compared to live data from a 
real array to determine the likelihood that a meteor 
scatter event occurred at each position in the sky. 

 
5. Determining Likelihood of  
 Meteor Direction 
  

The goal of meteor interferometry is to find the 
geophysical location of a meteor scatter event.  This 
has traditionally been done by solving for the angle of 
arrival (AOA), which is computed as a function of the 
phase difference between two antennas, shown in 
Equation (9)  as φ10  [Jones et al., 1998]: 
 

, 
 

where, d is the spacing between a two antennas, λ is 
the wavelength, and ξ is the angle of arrival (AOA).   

  Software can be used to calculate AOA solutions 
for each pair of antennas in the array.  Then, all possi-
ble values for AOA are tested for each antenna pair to 
determine which solution matches for all pairs in the 
array.  However, due to uncertainties, there is never a 
unique angle that satisfies Equation (9) for every pair 
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Figure 2: Radiation pattern at 97.3 MHz of a discone antenna 1.870 m above a perfectly conducting ground plane: 
 (a) Image of the NEC computer model of the antenna (showing currents flowing on the antenna’s elements).  
 (b) Radiation pattern of the antenna.   
 (c) Radiation pattern viewed from xz-plane (same for any plane through z-axis due to rotational symmetry).   
 (d) Slice of radiation pattern at xz-plane (same for any plane through the z-axis due to rotational symmetry). 

Figure 3: SWR plot comparison of NEC model and actual antenna. 
Frequency sweep from 85 to 500 MHz: 
 (a) SWR plot produced using NEC simulation 
 (b) SWR plot measured on an actual discone using a network 

analyzer  
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of antennas in an array.  As a result, a value for AOA 
is traditionally accepted if it is within some error toler-
ance.  Using a two dimensional array like one shown 
in Figure 1, it would then be possible to find azimuth 
and elevation angles describing the direction in the sky 
that a meteor event occurred [Peña et al., 2005].  The 
traditional method of interferometery described above 
is referred to as solving the inverse problem. 

This inverse problem approach works fairly well 
for systems with a high signal to noise ratio (SNR). 
However, for a system with a lower SNR, there may be 
more than one AOA value within the allowed error 
tolerances.  Since the method of solving the inverse 
problem can only determine the location of greatest 
likelihood for an event, it is not acceptable to have 
multiple values for AOA that are within the tolerances.  
Solving the inverse problem also makes it difficult to 
account for phase errors due to coupling, which can be 
very difficult to quantify.  In addition, it is often useful 
to know the likelihood of a meteor scatter across all 
parts of the sky, instead of only knowing the direction 
of greatest probability. 

Our method solves the forward problem, by di-
rectly computing the likelihood of a meteor scatter 
event at every point in the sky.  The general procedure 
for solving the forward problem is outlined below.  
Intermediate steps are explained in detail in the re-
mainder of this section. 

1. Create a computer model for the antenna ar-
ray using NEC (see Section 4.1). 

2. Compute expected voltages at the feed point 
of each antenna in the array by running NEC 
simulations using a plane wave excitation 
from each point in the sky (see Section 4.2). 

3. Add the appropriate phase shift to all voltages 
calculated by the NEC model to accurately 
represent the phase shifts in the transmission 
lines (see Section 3.2). 

4. Compute a list of antenna cross-correlations 
from the list of voltages obtained by the 
model (see Section 5.1).  

5. Using real cross-correlation data from the 
actual array, compare the real data to the cross
-correlations produced by the model (see Sec-
tion 5.2). 

6. Use a condensing function to obtain a single 
value for the likelihood of an event at each 
point in the sky (see Section 5.3). 

 
5.1 Computing Cross-Correlations 
 

All data produced by an interferometer is due to 
the cross-correlations between two antennas [Sahr, 
1996].  Since the data sets produced by most interfer-
ometers are in terms of cross-correlations, it is easiest 

to compare the NEC model to real data if the model 
also produces cross-correlations.   

The cross-correlation between antenna m and an-
tenna n is defined in Equation (10): 

 

, 
 

where Vm is the complex voltage on antenna m, and V*
n 

is the complex conjugate of the voltage on antenna n.  
The 〈·〉 notation represents an ensemble average in the 
time domain.  An n × n matrix, R, containing the cor-
relations between all n antennas can be created.  The 
diagonal (when m = n) of R represents the self-
correlation, or power on the n-th antenna, which is a 
real number.  The elements below the diagonal are 
simply the complex conjugates of the corresponding 
elements above the diagonal (Rmn = [Rnm]*).  As a re-
sult of this symmetry, R contains only n(n-1)/2 inde-
pendent cross-correlations, corresponding to the ele-
ments above the diagonal.  Equation (10) is used to 
calculate the correlation matrix for each point in the 
sky using the table of complex voltages produced from 
the NEC simulations. 

 
5.2 Comparing the Model to Real Data 

 
Normalization of the cross-correlations is required 

in order to compare a real data set to the model.  The 
normalized cross correlations, rmn are defined as: 

 

 , 
 

where Rmn is the un-normalized correlation between 
antenna m and antenna n.  Since elements on the di-
agonal of R represent powers, Rmm is written as Pm. 
 Once the correlation matrices of both the data and 
the model have been normalized using Equation (11), 
they can then be compared using a likelihood function.  
A likelihood function takes a difference between two 
cross-correlations and returns a value of likelihood 
between 0 and 1, where a value of 1 corresponds to the 
situation in which both cross-correlations are the same.  
There are several different likelihood functions that 
may be appropriate.  Here, the uncorrelated Gaussian 
described by Tarantola [1987] is used:   
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where L is the value of likelihood, |Δr| is the magni-
tude of the difference in the data and model cross-
correlations, and σ is the uncertainty in the cross-
correlation data.   

Calculating cross-correlation uncertainty (σ) is 
considerably difficult.  Equation (13) shows a very 
basic approximation that should gives the correct order 
of magnitude: 

 

. 
 

where Nind is the number of independent measurements 
taken in a time average of correlations.  Like the cross-
correlations, the uncertainties need to be normalized, 
yielding: 

 

. 
 
It should be noted that likelihood is not the same 

as probability, and thus these are not probability den-
sity maps of a meteor location.  Nevertheless, likeli-
hood is representative of probability and is therefore a 
useful measure.   
 
5.3 Condensing Functions 
 

After using a likelihood function, the result is a 
list of n(n-1)/2 independent likelihood values, where n 
is the number of antennas in the array.  The purpose of 
a condensing function is to obtain a single value to 
represent the likelihood of a meteor at the given posi-

tion, instead of n(n-1)/2 different values.  There are 
many functions that can be used for this purpose.  We 
propose three such condensing functions: the magni-
tude, average, and product condensing functions. 

The magnitude condensing function treats the list 
of likelihood values as a vector of length ℓ, and returns 
the normalized magnitude of the vector.  Equation (15) 
represents the magnitude condensing function, where 
Lm is the output of the condensing function, and li is 
the i-th element in the list of likelihoods: 

 

. 
 
The average condensing function returns the arith-

metic mean of the list of likelihoods.  The motivation 
is to produce a function that gives lower values when 
only one individual likelihood value is high.  In other 
words, this function is more sensitive to multiple oc-
currences.  Using the same variable definitions used in 
the preceding equation, Equation (16) represents the 
average condensing function: 

 

. 
 
The product condensing function returns the prod-

uct of each of the individual likelihoods in the list.  
This function is much more sensitive to multiple oc-
currences than either of the preceding ones.  Therefore, 
it is ideal for finding the region of greatest likelihood.  
Using the same variable definitions as the preceding 
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Figure 4: Likelihood plots comparing the three condensing functions when applied to the Gaussian likelihood 
function, where fake data plus random errors for a meteor located at 35° in azimuth and 10° in elevation was 
compared to the NEC model.  The phase uncertainty was assumed to be 10°. 
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equations, Equation (17) represents the product con-
densing function: 

 

. 
 
Figure 4 shows a comparison of the three con-

densing functions when applied to a set of test data.  
These plots show the likelihood of an event across the 
whole sky.  The radial position in the plot represents 
the elevation angle, such that the center is the zenith 
and the edge is the horizon.  The angular position 
around the circle represents the azimuth angle.   

Each of the plots in Figure 4 represents a slightly 
different view of the situation.  The magnitude con-
densing function shows the positions of all matches 
seen by the individual antennas, but shows multiple 
occurrences (positions where multiple antennas saw a 
good match) as a higher intensity.  As expected, the 
average condensing model still shows all matches, but 
intensifies the multiple occurrences.  As a result, the 
average condensing function is probably the most use-
ful plot for mapping the likelihood across the whole 
sky.  The product condensing function only shows the 
region representing the position of greatest likelihood. 
 
6. Results 
 

To obtain a likelihood plot based on real data from 
the five antenna array described in Section 2, correla-
tion data was obtained at a frequency of 94.9 MHz.  
This is transmitting frequency of the local radio station 
KUOW, which was transmitting from an azimuth of 
244° and an elevation slightly above the horizon.  Fig-
ure 5 shows the likelihood plot created from this data.  
As expected, there is a strong likelihood that the signal 
came from an azimuth of 243° and an elevation of 20°.  
Although this position is not the direction of maximum 
likelihood it is very promising that this method of in-
terferometry is able to identify the correct position of 
the transmitter. 

We have only begun our investigation into this 
method of interferometry, and as a result many other 
effects still need to be considered.  One major effect to 
consider in the future is multi-path.  It is known that 
radio waves are actually arriving from many different 
directions, and not just from one position in the sky.  
Therefore, more analysis is necessary in order to make 
this interferometer a reliable technique for meteor ra-
dar interferometry.  As an additional improvement, we 
suggest the application of closure phase and closure 
amplitude in both temporal and spatial domains [Sahr, 
1996]. 

 
7. Summary 
 

We conducted an investigation into the phase er-
rors associated with phase shifts in transmission lines 
as well as errors from mutual coupling between anten-
nas in an array.  This investigation resulted in the for-
mation of a new method of meteor radar interferome-
try. 

The new method of interferometry is a vast im-
provement over the traditional interferometry, because 
it gives not only the position of maximum likelihood 
of the meteor scatter, but also a map of the likelihood 
of meteor location across the whole sky.  In addition, 
this new method of interferometry accounts for phase 
errors due to mutual coupling and transmission line 
phase shifts.  Unlike traditional interferometry, angle 
of arrival ambiguities and aliasing are not an issue with 
our method.  For these reasons, this new method is a 
very useful tool for all meteor radar systems. 
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